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1. 

Anisotropic structural elements play a fundamental role in several fields of applied science
and technology: geophysics, mining, solid state physics, etc. A particular case of anisotropy
is orthotropic material, which when dealing with a plate structural element, requires the
knowledge of four mechanical parameters. An important chapter of structural mechanics
is that of artificially induced orthotropic characteristics and this situation takes place with
corrugated plates and membranes, ribbed shells and plates, etc. [1].

The present study deals with the determination of the fundamental frequency of
transverse vibration of the system shown in Figure 1 and which presents two complicating
features: the presence of the free edge at x= a, and a discontinuous variation of the
thickness at x= c.

The fundamental frequency of vibration is determined approximating the mode shape
by means of sinusoidal terms in the x-direction which contain optimization parameters in
their argument which allow for minimization of the eigenvalue when employing the
Rayleigh–Ritz method [2]. An independent solution is obtained using the finite element
method [3, 4]. The agreement, in the case of the fundamental frequency coefficient, is
excellent when comparing the F.E. results with those obtained analytically.

2.   

Based open previous studies [2, 5] it was considered convenient to employ the following
co-ordinate functions as approximations for the fundamental mode shape: three simply
supported edges, Fig. 1(a),
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Following reference [6] one expresses the governing function in the form
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T 1

Fundamental frequency coefficients zrh/Dv1a2 of the isotropic plate shown in Figure 1(a).

h2/h1

ZXXXXXXXXXXXCXXXXXXXXXXXV
4/5 3/5

ZXXXXCXXXXV ZXXXXCXXXXV
c/a

ZXXXXXXXXXXXCXXXXXXXXXXXV Uniform
a/b 4/5 1/2 1/5 4/5 1/2 1/5 thickness

FE 11·037 10·185 9·634 10·698 8·824 7·609 11·685
1 [7] 11·127 10·283 9·711 10·875 9·268 7·846 11·79

Eq. (1) 11·040 10·202 9·650 10·701 8·854 7·630 11·687

a/b= 2/5 FE 2·948 2·786 2·571 2·966 2·685 2·204 3·008
Eq. (1) 2·948 2·787 2·572 2·966 2·688 2·209 3·008

+4Dk 012W
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Substituting the approximating function in equation (3) and minimizing J[W] with respect
to the Aj ’s results in a homogeneous, linear system of equations in the Aj ’s. The
non-triviality condition yields a secular determinant whose lowest root constitutes the
fundamental frequency coefficient V1 =zrh/D1v1a2. Since

V1 =V1(g1, g2, . . . , gj), (4)

minimizing V1 with respect to the gj ’s one obtains an optimized value of V1. In the present
study J=3.

Figure 1. Rectangular plates of discontinuously varying thickness executing transverse vibrations. Case (a):
three edges are simply supported, the fourth is free. Case (b): three edges are clamped.
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T 2

Fundamental frequency coefficients zrh/Dv1a2 of the isotropic plate shown in Figure 1(b)

h2/h1

ZXXXXXXXXXXXCXXXXXXXXXXXV
4/5 3/5

ZXXXXCXXXXV ZXXXXCXXXXV
c/a

ZXXXXXXXXXXXCXXXXXXXXXXXV Uniform
a/b 4/5 1/2 1/5 4/5 1/2 1/5 thickness

1 FE 21·873 19·966 19·368 20·405 16·014 14·740 23·922
[7] 22·069 20·103 19·525 20·931 16·583 14·978 24·20

Eq. (2) 21·963 20·052 19·465 20·506 16·136 14·859 24·035

a/b= 2/5 FE 5·903 5·647 5·227 5·983 5·399 4·257 6·010
Eq. (2) 5·921 5·665 5·269 6·004 5·484 4·399 6·030

3.   

The present paper makes use of the orthotropic plate element developed in reference [4]
which is an extension of the well known isotropic plate element due to Bogner et al. [3].
In the case of a square plate (a/b=1) one half of the plate has been subdivided into 200
square elements resulting in 231 nodes. For the plate simply supported along three sides
it turns out that when half of the plate is considered, 820 degrees of freedom are generated.
On the other hand, when the plate is clamped along three sides, a similar modelling yields
760 degrees of freedom. Another configuration studied was a rectangular plate of aspect
ratio a/b=2/5. One half of the structure was subdivided into 160 rectangular elements
resulting in 672 degrees of freedom when the plate was simply supported at three edges
and 620 degrees of freedom when three edges were clamped.

4.  

The previously described analytical and numerical techniques were applied first to an
isotropic plate taking Poisson’s ratio equal to 0·3. The results are shown in Table 1 in the

T 3

Fundamental frequency coefficients zrh/D1v1a2 of the orthotropic plate shown in Figure
1(a). (D2/D1 =1/2, DkD1 =1/3, n2 =0·30)

h2/h1

ZXXXXXXXXXXXCXXXXXXXXXXXV
4/5 3/5

ZXXXXCXXXXV ZXXXXCXXXXV
c/a

ZXXXXXXXXXXXCXXXXXXXXXXXV Uniform
a/b 4/5 1/2 1/5 4/5 1/2 1/5 thickness

1 FE 8·881 8·266 7·743 8·721 7·401 6·249 9·267
Eq. (1) 8·884 8·288 7·765 8·725 7·427 6·272 9·270

2/5 Fe 2·705 2·570 2·359 2·741 2·516 2·053 2·736
Eq. (1) 2·706 2·572 2·361 2·741 2·520 2·057 2·736
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T 4

Fundamental frequency coefficients zrh/D1v1a2 of the orthotropic plate shown in Figure
1(b). (D2/D1 =1/2, DkD1 =1/3, n2 =0·30)

h2/h1

ZXXXXXXXXXXXCXXXXXXXXXXXV
4/5 3/5

ZXXXXCXXXXV ZXXXXCXXXXV
c/a

ZXXXXXXXXXXXCXXXXXXXXXXXV Uniform
a/b 4/5 1/2 1/5 4/5 1/2 1/5 thickness

1 FE 16·541 15·143 14·571 15·717 12·504 11·200 17·849
Eq. (2) 16·632 15·230 14·667 15·806 12·618 11·336 17·963

2/5 FE 5·384 5·201 4·765 5·531 5·107 3·934 5·387
Eq. (2) 5·413 5·229 4·819 5·562 5·204 4·093 5·419

case of the configuration shown in Figure 1(a) and in Table 2 when three edges are
clamped.

The agreement between the finite element results and the eigenvalues determined using
the analytical approximations (1) and (2) is excellent from an applied engineering
viewpoint. On the other hand these analytical predictions are better than those obtained
using the polynomial approximations which have been presented in reference [7]. In all
cases the fundamental eigenvalues have been truncated after the third decimal figure.

Tables 3 and 4 deal with orthotropic plates subjected to the boundary conditions
depicted in Figures 1(a) and 1(b), respectively. A hypothetical material has been assumed
such that D2/D1 =1/2, Dk /D1 =1/3 and n2 =0·30. The agreement between the results
obtained by means of the finite element algorithmic procedure and those determined using
the optimized Rayleigh–Ritz method and the ‘‘Pseudo’’ Fourier expansions (1) and (2) is
excellent for all the situations considered. In summary, the simple analytical approach
presented in this study seems quite convenient and accurate for investigating the rather
complex elastodynamics problem defined in this paper.
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